Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 9: 931548, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213116

RESUMO

We investigated the immunomodulatory effect of varying levels of dietary ω6/ω3 fatty acids (FA) on Atlantic salmon (Salmo salar) antibacterial response. Two groups were fed either high-18:3ω3 or high-18:2ω6 FA diets for 8 weeks, and a third group was fed for 4 weeks on the high-18:2ω6 diet followed by 4 weeks on the high-18:3ω3 diet and termed "switched-diet". Following the second 4 weeks of feeding (i.e., at 8 weeks), head kidney tissues from all groups were sampled for FA analysis. Fish were then intraperitoneally injected with either a formalin-killed Renibacterium salmoninarum bacterin (5 × 107 cells mL-1) or phosphate-buffered saline (PBS control), and head kidney tissues for gene expression analysis were sampled at 24 h post-injection. FA analysis showed that the head kidney profile reflected the dietary FA, especially for C18 FAs. The qPCR analyses of twenty-three genes showed that both the high-ω6 and high-ω3 groups had significant bacterin-dependent induction of some transcripts involved in lipid metabolism (ch25ha and lipe), pathogen recognition (clec12b and tlr5), and immune effectors (znrf1 and cish). In contrast, these transcripts did not significantly respond to the bacterin in the "switched-diet" group. Concurrently, biomarkers encoding proteins with putative roles in biotic inflammatory response (tnfrsf6b) and dendritic cell maturation (ccl13) were upregulated, and a chemokine receptor (cxcr1) was downregulated with the bacterin injection regardless of the experimental diets. On the other hand, an inflammatory regulator biomarker, bcl3, was only significantly upregulated in the high-ω3 fed group, and a C-type lectin family member (clec3a) was only significantly downregulated in the switched-diet group with the bacterin injection (compared with diet-matched PBS-injected controls). Transcript fold-change (FC: bacterin/PBS) showed that tlr5 was significantly over 2-fold higher in the high-18:2ω6 diet group compared with other diet groups. FC and FA associations highlighted the role of DGLA (20:3ω6; anti-inflammatory) and/or EPA (20:5ω3; anti-inflammatory) vs. ARA (20:4ω6; pro-inflammatory) as representative of the anti-inflammatory/pro-inflammatory balance between eicosanoid precursors. Also, the correlations revealed associations of FA proportions (% total FA) and FA ratios with several eicosanoid and immune receptor biomarkers (e.g., DGLA/ARA significant positive correlation with pgds, 5loxa, 5loxb, tlr5, and cxcr1). In summary, dietary FA profiles and/or regimens modulated the expression of some immune-relevant genes in Atlantic salmon injected with R. salmoninarum bacterin. The modulation of Atlantic salmon responses to bacterial pathogens and their associated antigens using high-ω6/high-ω3 diets warrants further investigation.

2.
Front Immunol ; 13: 804987, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401509

RESUMO

Lepeophtheirus salmonis (sea lice) and bacterial co-infection threatens wild and farmed Atlantic salmon performance and welfare. In the present study, pre-adult L. salmonis-infected and non-infected salmon were intraperitoneally injected with either formalin-killed Aeromonas salmonicida bacterin (ASAL) or phosphate-buffered saline (PBS). Dorsal skin samples from each injection/infection group (PBS/no lice, PBS/lice, ASAL/no lice, and ASAL/lice) were collected at 24 h post-injection and used for transcriptome profiling using a 44K salmonid microarray platform. Microarray results showed no clear inflammation gene expression signatures and revealed extensive gene repression effects by pre-adult lice (2,189 down and 345 up-regulated probes) in the PBS-injected salmon (PBS/lice vs. PBS/no lice), which involved basic cellular (e.g., RNA and protein metabolism) processes. Lice repressive effects were not observed within the group of ASAL-injected salmon (ASAL/lice vs. ASAL/no lice); on the contrary, the observed skin transcriptome changes -albeit of lesser magnitude (82 up and 1 down-regulated probes)- suggested the activation in key immune and wound healing processes (e.g., neutrophil degranulation, keratinocyte differentiation). The molecular skin response to ASAL was more intense in the lice-infected (ASAL/lice vs. PBS/lice; 272 up and 11 down-regulated probes) than in the non-infected fish (ASAL/no lice vs. PBS/no lice; 27 up-regulated probes). Regardless of lice infection, the skin's response to ASAL was characterized by the putative activation of both antibacterial and wound healing pathways. The transcriptomic changes prompted by ASAL+lice co-stimulation (ASAL/lice vs. PBS/no lice; 1878 up and 3120 down-regulated probes) confirmed partial mitigation of lice repressive effects on fundamental cellular processes and the activation of pathways involved in innate (e.g., neutrophil degranulation) and adaptive immunity (e.g., antibody formation), as well as endothelial cell migration. The qPCR analyses evidenced immune-relevant genes co-stimulated by ASAL and lice in an additive (e.g., mbl2b, bcl6) and synergistic (e.g., hampa, il4r) manner. These results provided insight on the physiological response of the skin of L. salmonis-infected salmon 24 h after ASAL stimulation, which revealed immunostimulatory properties by the bacterin with potential applications in anti-lice treatments for aquaculture. As a simulated co-infection model, the present study also serves as a source of candidate gene biomarkers for sea lice and bacterial co-infection.


Assuntos
Aeromonas salmonicida , Coinfecção , Copépodes , Doenças dos Peixes , Ftirápteros , Salmo salar , Aeromonas salmonicida/genética , Animais , Vacinas Bacterianas , Doenças dos Peixes/genética , Formaldeído , Ftirápteros/genética , Salmo salar/genética , Transcriptoma
3.
Front Immunol ; 13: 806484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418993

RESUMO

Gill damage represents a significant challenge in the teleost fish aquaculture industry globally, due to the gill's involvement in several vital functions and direct contact with the surrounding environment. To examine the local and systemic effects accompanying gill damage (which is likely to negatively affect gill function) of Atlantic salmon, we performed a field sampling to collect gill and liver tissue after several environmental insults (e.g., harmful algal blooms). Before sampling, gills were visually inspected and gill damage was scored; gill scores were assigned from pristine [gill score 0 (GS0)] to severely damaged gills (GS3). Using a 44K salmonid microarray platform, we aimed to compare the transcriptomes of pristine and moderately damaged (i.e., GS2) gill tissue. Rank Products analysis (5% percentage of false-positives) identified 254 and 34 upregulated and downregulated probes, respectively, in GS2 compared with GS0. Differentially expressed probes represented genes associated with functions including gill remodeling, wound healing, and stress and immune responses. We performed gill and liver qPCR for all four gill damage scores using microarray-identified and other damage-associated biomarker genes. Transcripts related to wound healing (e.g., neb and klhl41b) were significantly upregulated in GS2 compared with GS0 in the gills. Also, transcripts associated with immune and stress-relevant pathways were dysregulated (e.g., downregulation of snaclec 1-like and upregulation of igkv3) in GS2 compared with GS0 gills. The livers of salmon with moderate gill damage (i.e., GS2) showed significant upregulation of transcripts related to wound healing (i.e., chtop), apoptosis (e.g., bnip3l), blood coagulation (e.g., f2 and serpind1b), transcription regulation (i.e., pparg), and stress-responses (e.g., cyp3a27) compared with livers of GS0 fish. We performed principal component analysis (PCA) using transcript levels for gill and liver separately. The gill PCA showed that PC1 significantly separated GS2 from all other gill scores. The genes contributing most to this separation were pgam2, des, neb, tnnt2, and myom1. The liver PCA showed that PC1 significantly separated GS2 from GS0; levels of hsp70, cyp3a27, pparg, chtop, and serpind1b were the highest contributors to this separation. Also, hepatic acute phase biomarkers (e.g., serpind1b and f2) were positively correlated to each other and to gill damage. Gill damage-responsive biomarker genes and associated qPCR assays arising from this study will be valuable in future research aimed at developing therapeutic diets to improve farmed salmon welfare.


Assuntos
Brânquias , Salmo salar , Animais , Biomarcadores/metabolismo , Brânquias/metabolismo , Fígado/metabolismo , PPAR gama/metabolismo , Salmo salar/genética
4.
Front Immunol ; 12: 709910, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484211

RESUMO

The Atlantic salmon (Salmo salar) is an economically important fish, both in aquaculture and in the wild. In vertebrates, macrophages are some of the first cell types to respond to pathogen infection and disease. While macrophage biology has been characterized in mammals, less is known in fish. Our previous work identified changes in the morphology, phagocytic ability, and miRNA profile of Atlantic salmon adherent head kidney leukocytes (HKLs) from predominantly "monocyte-like" at Day 1 of in vitro culture to predominantly "macrophage-like" at Day 5 of culture. Therefore, to further characterize these two cell populations, we examined the mRNA transcriptome profile in Day 1 and Day 5 HKLs using a 44K oligonucleotide microarray. Large changes in the transcriptome were revealed, including changes in the expression of macrophage and immune-related transcripts (e.g. csf1r, arg1, tnfa, mx2), lipid-related transcripts (e.g. fasn, dhcr7, fabp6), and transcription factors involved in macrophage differentiation and function (e.g. klf2, klf9, irf7, irf8, stat1). The in silico target prediction analysis of differentially expressed genes (DEGs) using miRNAs known to change expression in Day 5 HKLs, followed by gene pathway enrichment analysis, supported that these miRNAs may be involved in macrophage maturation by targeting specific DEGs. Elucidating how immune cells, such as macrophages, develop and function is a key step in understanding the Atlantic salmon immune system. Overall, the results indicate that, without the addition of exogenous factors, the adherent HKL cell population differentiates in vitro to become macrophage-like.


Assuntos
Perfilação da Expressão Gênica , Leucócitos/imunologia , Macrófagos/fisiologia , Salmo salar/imunologia , Animais , Células Cultivadas , Metabolismo dos Lipídeos , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição/fisiologia
5.
Microorganisms ; 9(4)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921528

RESUMO

Cunner (Tautogolabrus adspersus) is a cleaner fish being considered for utilized in the North Atlantic salmon (Salmo salar) aquaculture industry to biocontrol sea lice infestations. However, bacterial diseases due to natural infections in wild cunners have yet to be described. This study reports the isolation of Pseudomonas sp. J380 from infected wild cunners and its phenotypic, genomic, and transcriptomic characterization. This Gram-negative motile rod-shaped bacterium showed a mesophilic (4-28 °C) and halotolerant growth. Under iron-limited conditions, Pseudomonas sp. J380 produced pyoverdine-type fluorescent siderophore. Koch's postulates were verified in wild cunners by intraperitoneally (i.p.) injecting Pseudomonas sp. J380 at 4 × 103, 4 × 105, and 4 × 107 colony forming units (CFU)/dose. Host-range and comparative virulence were also investigated in lumpfish and Atlantic salmon i.p. injected with ~106 CFU/dose. Lumpfish were more susceptible compared to cunners, and Atlantic salmon was resistant to Pseudomonas sp. J380 infection. Cunner tissues were heavily colonized by Pseudomonas sp. J380 compared to lumpfish and Atlantic salmon suggesting that it might be an opportunistic pathogen in cunners. The genome of Pseudomonas sp. J380 was 6.26 megabases (Mb) with a guanine-cytosine (GC) content of 59.7%. Biochemical profiles, as well as comparative and phylogenomic analyses, suggested that Pseudomonas sp. J380 belongs to the P. fluorescens species complex. Transcriptome profiling under iron-limited vs. iron-enriched conditions identified 1159 differentially expressed genes (DEGs). Cellular metabolic processes, such as ribosomal and energy production, and protein synthesis, were impeded by iron limitation. In contrast, genes involved in environmental adaptation mechanisms including two-component systems, histidine catabolism, and redox balance were transcriptionally up-regulated. Furthermore, iron limitation triggered the differential expression of genes encoding proteins associated with iron homeostasis. As the first report on a bacterial infection in cunners, the current study provides an overview of a new marine pathogen, Pseudomonas sp. J380.

6.
Front Immunol ; 12: 789465, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35035387

RESUMO

Salmonid rickettsial septicemia (SRS), caused by Piscirickettsia salmonis, is one of the most devastating diseases of salmonids. However, the transcriptomic responses of Atlantic salmon (Salmon salar) in freshwater to an EM-90-like isolate have not been explored. Here, we infected Atlantic salmon parr with an EM-90-like isolate and conducted time-course qPCR analyses of pathogen load and four biomarkers (campb, hampa, il8a, tlr5a) of innate immunity on the head kidney samples. Transcript expression of three of these genes (except hampa), as well as pathogen level, peaked at 21 days post-injection (DPI). Multivariate analyses of infected individuals at 21 DPI revealed two infection phenotypes [lower (L-SRS) and higher (H-SRS) infection level]. Five fish from each group (Control, L-SRS, and H-SRS) were selected for transcriptome profiling using a 44K salmonid microarray platform. We identified 1,636 and 3,076 differentially expressed probes (DEPs) in the L-SRS and H-SRS groups compared with the control group, respectively (FDR = 1%). Gene ontology term enrichment analyses of SRS-responsive genes revealed the activation of a large number of innate (e.g. "phagocytosis", "defense response to bacterium", "inflammatory response") and adaptive (e.g. "regulation of T cell activation", "antigen processing and presentation of exogenous antigen") immune processes, while a small number of general physiological processes (e.g. "apoptotic process", development and metabolism relevant) was enriched. Transcriptome results were confirmed by qPCR analyses of 42 microarray-identified transcripts. Furthermore, the comparison of individuals with differing levels of infection (H-SRS vs. L-SRS) generated insights into the biological processes possibly involved in disease resistance or susceptibility. This study demonstrated a low mortality (~30%) EM-90-like infection model and broadened the current understanding of molecular pathways underlying P. salmonis-triggered responses of Atlantic salmon, identifying biomarkers that may assist to diagnose and combat this pathogen.


Assuntos
Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Piscirickettsia/patogenicidade , Infecções por Piscirickettsiaceae/genética , Salmo salar/genética , Transcriptoma , Animais , Carga Bacteriana , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Imunidade Celular , Imunidade Inata , Rim/imunologia , Rim/microbiologia , Piscirickettsia/imunologia , Infecções por Piscirickettsiaceae/imunologia , Infecções por Piscirickettsiaceae/microbiologia , Salmo salar/imunologia , Salmo salar/microbiologia , Transdução de Sinais , Fatores de Tempo
7.
Biomolecules ; 10(10)2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998424

RESUMO

CXCL8 (interleukin-8, IL-8) is a CXC family chemokine that recruits specific target cells and mediates inflammation and wound healing. This study reports the identification and characterization of two cxcl8 homologs from rock bream, Oplegnathus fasciatus. Investigation of molecular signature, homology, phylogeny, and gene structure suggested that they belonged to lineages 1 (L1) and 3 (L3), and designated Ofcxcl8-L1 and Ofcxcl8-L3. While Ofcxcl8-L1 and Ofcxcl8-L3 revealed quadripartite and tripartite organization, in place of the mammalian ELR (Glu-Leu-Arg) motif, their peptides harbored EMH (Glu-Met-His) and NSH (Asn-Ser-His) motifs, respectively. Transcripts of Ofcxcl8s were constitutively detected by Quantitative Real-Time PCR (qPCR) in 11 tissues examined, however, at different levels. Ofcxcl8-L1 transcript robustly responded to treatments with stimulants, such as flagellin, concanavalin A, lipopolysaccharide, and poly(I:C), and pathogens, including Edwardsiella tarda, Streptococcus iniae, and rock bream iridovirus, when compared with Ofcxcl8-L3 mRNA. The differences in the putative promoter features may partly explain the differential transcriptional modulation of Ofcxcl8s. Purified recombinant OfCXCL8 (rOfCXCL8) proteins were used in in vitro chemotaxis and proliferation assays. Despite the lack of ELR motif, both rOfCXCL8s exhibited leukocyte chemotactic and proliferative functions, where the potency of rOfCXCL8-L1 was robust and significant compared to that of rOfCXCL8-L3. The results, taken together, are indicative of the crucial importance of Ofcxcl8s in inflammatory responses and immunoregulatory roles in rock bream immunity.


Assuntos
Genômica , Interleucina-8/metabolismo , Perciformes/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Edwardsiella tarda/fisiologia , Proteínas de Peixes/classificação , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Interleucina-8/classificação , Interleucina-8/genética , Iridovirus/fisiologia , Lipopolissacarídeos/farmacologia , Perciformes/genética , Perciformes/microbiologia , Filogenia , Poli I-C/farmacologia , Regiões Promotoras Genéticas , Domínios Proteicos , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Transcrição Gênica/efeitos dos fármacos
8.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244468

RESUMO

Parasitic sea lice (e.g., Lepeophtheirus salmonis) cause costly outbreaks in salmon farming. Molecular insights into parasite-induced host responses will provide the basis for improved management strategies. We investigated the early transcriptomic responses in pelvic fins of Atlantic salmon parasitized with chalimus I stage sea lice. Fin samples collected from non-infected (i.e. pre-infected) control (PRE) and at chalimus-attachment sites (ATT) and adjacent to chalimus-attachment sites (ADJ) from infected fish were used in profiling global gene expression using 44 K microarrays. We identified 6568 differentially expressed probes (DEPs, FDR < 5%) that included 1928 shared DEPs between ATT and ADJ compared to PRE. The ATT versus ADJ comparison revealed 90 DEPs, all of which were upregulated in ATT samples. Gene ontology/pathway term network analyses revealed profound changes in physiological processes, including extracellular matrix (ECM) degradation, tissue repair/remodeling and wound healing, immunity and defense, chemotaxis and signaling, antiviral response, and redox homeostasis in infected fins. The QPCR analysis of 37 microarray-identified transcripts representing these functional themes served to confirm the microarray results with a significant positive correlation (p < 0.0001). Most immune/defense-relevant transcripts were downregulated in both ATT and ADJ sites compared to PRE, suggesting that chalimus exerts immunosuppressive effects in the salmon's fins. The comparison between ATT and ADJ sites demonstrated the upregulation of a suite of immune-relevant transcripts, evidencing the salmon's attempt to mount an anti-lice response. We hypothesize that an imbalance between immunomodulation caused by chalimus during the early phase of infection and weak defense response manifested by Atlantic salmon makes it a susceptible host for L. salmonis.


Assuntos
Copépodes/fisiologia , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Imunomodulação , Salmo salar/genética , Salmo salar/imunologia , Transcriptoma , Animais , Copépodes/patogenicidade , Suscetibilidade a Doenças , Feminino , Doenças dos Peixes/parasitologia , Perfilação da Expressão Gênica/veterinária , Ontologia Genética , Redes Reguladoras de Genes , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Imunidade , Redes e Vias Metabólicas , Análise em Microsséries
9.
Cells ; 8(12)2019 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-31817907

RESUMO

MicroRNAs (miRNAs) are key regulators in fish immune responses. However, no study has previously characterized the impact of polyriboinosinic polyribocytidylic acid (pIC) and formalin-killed typical Aeromonas salmonicida (ASAL) on miRNA expression in Atlantic salmon fed a commercial diet with and without immunostimulant CpG. To this end, first, we performed small RNA deep sequencing and qPCR analyses to identify and confirm pIC- and/or ASAL-responsive miRNAs in the head kidney of salmon fed a control diet. DESeq2 analyses identified 12 and 18 miRNAs differentially expressed in pIC and ASAL groups, respectively, compared to the controls. Fifteen of these miRNAs were studied by qPCR; nine remained significant by qPCR. Five miRNAs (miR-27d-1-2-5p, miR-29b-2-5p, miR-146a-5p, miR-146a-1-2-3p, miR-221-5p) were shown by qPCR to be significantly induced by both pIC and ASAL. Second, the effect of CpG-containing functional feed on miRNA expression was investigated by qPCR. In pre-injection samples, 6 of 15 miRNAs (e.g., miR-181a-5-3p, miR-462a-3p, miR-722-3p) had significantly lower expression in fish fed CpG diet than control diet. In contrast, several miRNAs (e.g., miR-146a-1-2-3p, miR-192a-5p, miR-194a-5p) in the PBS- and ASAL-injected groups had significantly higher expression in CpG-fed fish. Multivariate statistical analyses confirmed that the CpG diet had a greater impact on miRNA expression in ASAL-injected compared with pIC-injected fish. This study identified immune-relevant miRNA biomarkers that will be valuable in the development of diets to combat infectious diseases of salmon.


Assuntos
Adjuvantes Imunológicos/farmacologia , Biomarcadores/metabolismo , MicroRNAs/metabolismo , Oligodesoxirribonucleotídeos/farmacologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Hormônios de Inseto/farmacologia , Poli I-C/farmacologia , Salmo salar
10.
Fish Shellfish Immunol ; 69: 128-141, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28818616

RESUMO

Signal transducers and activators of transcription 1 (STAT1) is critically involved in mediating cytokine-driven signaling, and triggers the transcription of target genes to activate cellular functions. Although the structural and functional aspects of STAT members have been well described in mammals, only limited information is available for the STAT genes in teleost fishes. In the present study, two variants of STAT1 genes (RbSTAT1 and RbSTAT1L) were identified from rock bream and characterized at the cDNA and genomic sequence levels. RbSTAT1 and RbSTAT1L were found to share a common domain architecture with mammalian STAT1. Phylogenetic analysis revealed that RbSTAT1 shows a common evolutionary trajectory with other STAT1 counterparts, whereas RbSTAT1L showed a separate path, implying that it could be a novel member of the STAT family. The genomic organizations of RbSTAT1 and RbSTAT1L illustrated a similar exon-intron pattern with 23 exons in the coding sequence. Transcription factor-binding sites, which are mostly involved in the regulation of immune responses, were predicted at the putative promoter regions of the RbSTAT1 and RbSTAT1L genes. SYBR Green qPCR analysis revealed the ubiquitous expression of RbSTAT1 and RbSTAT1L transcripts in different fish tissues with the highest level observed in peripheral blood cells. Significantly modulated transcripts were noted upon viral (rock bream iridovirus [RBIV]), bacterial (Edwardsiella tarda and Streptococcus iniae), and pathogen-associated molecular pattern (lipopolysaccharide and poly I:C) stimulations. The WST-1 cell viability assay affirmed the potential antiviral capacity of RbSTAT1 and RbSTAT1L against RBIV. A possible role of RbSTAT1 and RbSTAT1L in the wound healing process was revealed according to their modulated expression in injured fish. In addition, the transcriptional regulation of RbSTAT1 and RbSTAT1L was analyzed by qPCR following stimulation with rock bream interleukin-10. Taken together, these findings suggest that the STAT1-mediated Janus kinase/STAT pathway might at least in part be involved in the regulatory mechanisms underlying the immune defensive roles against microbial pathogens and the wound healing process.


Assuntos
Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Sequência de Aminoácidos , Animais , Infecções por Vírus de DNA/imunologia , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica , Iridoviridae/fisiologia , Lipopolissacarídeos/farmacologia , Perciformes , Filogenia , Poli I-C/farmacologia , Distribuição Aleatória , Fator de Transcrição STAT1/química , Alinhamento de Sequência/veterinária , Infecções Estreptocócicas/imunologia , Streptococcus iniae/fisiologia
11.
Gene ; 626: 95-105, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28499943

RESUMO

Signal transducer and activator of transcription 2 (STAT2) is a key element that transduces signals from the cell membrane to the nucleus via the type I interferon-signaling pathway. Although the structural and functional aspects of STAT proteins are well studied in mammals, information on teleostean STATs is very limited. In this study, a STAT paralog, which is highly homologous to the STAT2 members, was identified from a commercially important fish species called rock bream and designated as RbSTAT2. The RbSTAT2 gene was characterized at complementary DNA (cDNA) and genomic sequence levels, and was found to possess structural features common with its mammalian counterparts. The complete cDNA sequence was distributed into 24 exons in the genomic sequence. The promoter proximal region was analyzed and found to contain potential transcription factor binding sites to regulate the transcription of RbSTAT2. Phylogenetic studies and comparative genomic structure organization revealed the distinguishable evolution for fish and other vertebrate STAT2 orthologs. Transcriptional quantification was performed by SYBR Green quantitative real-time PCR (qPCR) and the ubiquitous expression of RbSTAT2 transcripts was observed in all tissues analyzed from healthy fish, with a remarkably high expression in blood cells. Significantly (P<0.05) altered transcription of RbSTAT2 was detected after immune challenge experiments with viral (rock bream irido virus; RBIV), bacterial (Edwardsiella tarda and Streptococcus iniae), and immune stimulants (poly I:C and LPS). Antiviral potential was further confirmed by WST-1 assay, by measuring the viability of rock bream heart cells treated with RBIV. In addition, results of an in vitro challenge experiment signified the influence of rock bream interleukin-10 (RbIL-10) on transcription of RbSTAT2. Subcellular localization studies by transfection of pEGFP-N1/RbSTAT2 into rock bream heart cells revealed that the RbSTAT2 was usually located in the cytoplasm and translocated near to the nucleus upon poly I:C administration. Altogether, these findings suggest that RbSTAT2 is involved in various biologically crucial mechanisms, and provides immune protection to the rock bream.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Peixes/metabolismo , Fatores de Transcrição STAT/metabolismo , Estresse Fisiológico , Transporte Ativo do Núcleo Celular , Animais , Clonagem Molecular , Proteínas de Peixes/genética , Peixes/genética , Infecções/genética , Interleucina-10/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição STAT/genética
12.
Vet Immunol Immunopathol ; 186: 29-40, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28413047

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is one of the crucial transcription factors in the Janus kinase (JAK)/STAT signaling pathway, and it was previously considered as acute phase response factor. A number of interleukins (ILs) such as IL-5, IL-6, IL-9, IL-10, IL-12, and IL-22 are known to be involved in activation of STAT3. In addition, various growth factors and pathogenic or oxidative stresses mediate the activation of a wide range of functions via STAT3. In this study, a STAT3 homolog was identified and functionally characterized from rock bream (RbSTAT3), Oplegnathus fasciatus. In silico characterization revealed that the RbSTAT3 amino acid sequence shares highly conserved common domain architectural features including N-terminal domain, coiled coil domain, DNA binding domain, linker domain, and Src homology 2 (SH2) domains. In addition, a fairly conserved transcriptional activation domain (TAD) was located at the C-terminus. Comparison of RbSTAT3 with other counterparts revealed higher identities (>90%) with fish orthologs. The genomic sequence of RbSTAT3 was obtained from a bacterial artificial chromosome (BAC) library, and was identified as a multi-exonic gene (24 exons), as found in other vertebrates. Genomic structural comparison and phylogenetic studies have showed that the evolutionary routes of teleostean and non-teleostean vertebrates were distinct. Quantitative real time PCR (qPCR) analysis revealed that the spatial distribution of RbSTAT3 mRNA expression was ubiquitous and highly detectable in blood, heart, and liver tissues. Transcriptional modulation of RbSTAT3 was examined in blood and liver tissues after challenges with bacteria (Edwardsiella tarda and Streptococcus iniae), rock bream irido virus (RBIV), and immune stimulants (LPS and poly (I:C)). Significant changes in RbSTAT3 transcription were also observed in response to tissue injury. In addition, the transcriptional up-regulation of RbSTAT3 was detected in rock bream heart cells upon recombinant rock bream IL-10 (rRbIL-10) treatment. Subcellular localization and nuclear translocation of rock bream STAT3 following poly (I:C) treatment were also demonstrated. Taken together, the results of the current study provide important evidence for potential roles of rock bream STAT3 in the immune system and wound healing processes.


Assuntos
Perciformes/genética , Fator de Transcrição STAT3/genética , Animais , DNA Complementar , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Interleucina-10/metabolismo , Perciformes/classificação , Perciformes/imunologia , Perciformes/microbiologia , Filogenia , RNA Mensageiro , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/metabolismo , Homologia de Sequência de Aminoácidos , Estresse Fisiológico/imunologia , Transcrição Gênica , Transcriptoma , Cicatrização/genética
13.
Fish Shellfish Immunol ; 62: 276-290, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28111358

RESUMO

Toll-like receptor 5 (TLR5) recognizes bacterial flagellin and induces the downstream signaling through the myeloid differentiation primary response gene 88 (MyD88) protein to produce proinflammatory cytokines. In this study, we describe a TLR5 membrane form (OfTLR5M) and its adaptor protein MyD88 (OfMyD88) in rock bream, Oplegnathus fasciatus. Both Oftlr5m (6.7 kb) and Ofmyd88 (3.7 kb) genes displayed a quinquepartite structure with five exons and four introns. Protein structure of OfTLR5M revealed the conventional architecture of TLRs featured by an extracellular domain with 22 leucine rich repeats (LRR), a transmembrane domain and an endodomain with TIR motif. Primary OfTLR5M sequence shared a higher homology with teleost TLR5M. The evolutional analysis confirmed that TLR5 identified in the current study is a membrane receptor and the data further suggested the co-evolution of the membrane-anchored and soluble forms of TLR5 in teleosts. Inter-lineage comparison of gene structures in vertebrates indicated that the tlr5m gene has evolved with extensive rearrangement; whereas, the myd88 gene has maintained a stable structure throughout the evolution. Inspection of 5' flanking region of these genes disclosed the presence of several transcription factor binding sites including NF-κB. Quantitative real-time PCR (qPCR) detected Oftlr5m mRNA in eleven tissues with the highest abundance in liver. In vivo flagellin administration strongly induced the transcripts of both Oftlr5m and Ofmyd88 in gills and head kidney tissues suggesting their ligand-mediated upregulation. In a luciferase assay, HEK293T cells transiently transfected with Oftlr5m and Ofmyd88 demonstrated a higher NF-κB activity than the mock control, and the luciferase activity was intensified when cells were stimulated with flagellin. Collectively, our study represents the genomic, evolutional, expressional and functional insights into a receptor and adaptor molecules of teleost origin that are involved in flagellin sensing.


Assuntos
Proteínas de Peixes/genética , Flagelina/farmacologia , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/genética , Perciformes/genética , Receptor 5 Toll-Like/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Perciformes/imunologia , Perciformes/metabolismo , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Salmonella typhimurium/fisiologia , Alinhamento de Sequência/veterinária , Receptor 5 Toll-Like/química , Receptor 5 Toll-Like/metabolismo
14.
Dev Comp Immunol ; 71: 70-81, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28131766

RESUMO

A ß-galactoside binding lectin, designated as galectin-2, was identified and characterized from rock bream Oplegnathus fasciatus (OfGal-2). The cDNA of OfGal-2 comprised of 692 bp with a coding sequence of 396 bp, encoding a putative polypeptide of 131 amino acids. Gene structure analysis of OfGal-2 revealed a four exon-three intron organization. A single carbohydrate-binding domain containing all seven important residues for carbohydrate binding was located in the third exon, which formed a carbohydrate-binding pocket. Homology screening and sequence analysis demonstrated that OfGal-2 is an evolutionarily conserved proto-type galectin. OfGal-2 transcripts were detected in several healthy fish tissues, with the highest level observed in the intestine, followed by the liver. The expression of OfGal-2 was elevated upon the injection of various mitogenic stimulants and pathogens in a time-dependent manner. Upregulated expression in the liver after tissue injury suggested its role as a damage-associated molecular pattern. Recombinant OfGal-2 protein had hemagglutinating potential and possessed affinity towards lactose and galactose. Moreover, the recombinant protein agglutinated and bound potential pathogenic bacteria and a ciliate. The results of this study indicate that the galectin-2 from rock bream has a potential role in immunity, particularly in the recognition of invading pathogens.


Assuntos
Infecções Bacterianas/imunologia , Proteínas de Peixes/metabolismo , Galectina 2/metabolismo , Intestinos/fisiologia , Tecido Linfoide/fisiologia , Perciformes/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Proteínas Recombinantes/metabolismo , Viroses/imunologia , Animais , Clonagem Molecular , Proteínas de Peixes/genética , Galectina 2/genética , Regulação da Expressão Gênica , Estruturas Genéticas , Tecido Linfoide/microbiologia , Tecido Linfoide/virologia , Filogenia , Receptores de Reconhecimento de Padrão/genética , Proteínas Recombinantes/genética , Transcriptoma
15.
Dev Comp Immunol ; 67: 43-56, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27984102

RESUMO

Elevated levels of ROS can cause serious intracellular damages by reacting readily with nucleic acids, proteins and lipids, thus triggering tissue damage and cell death. Thioredoxin system is one of the principal factors that maintain the intracellular redox balance via its antioxidant property. In this study, we characterized two new thioredoxin isoforms (SsTXN-like 1 and SsMtTXN-like) from black rockfish, Sebastes schlegelii. The molecular and structural characteristics, as well as the evolutionary relationships of SsTXN-like 1 and SsMtTXN-like confirmed that they belong to the thioredoxin superfamily. A classical thioredoxin domain was found in both proteins with a conserved redox-active site CXYC, however, only the precursor of SsMtTXN-like protein possessed a mitochondrial targeting signal. The results from insulin disulfide reduction activity assay demonstrated that their recombinant proteins are capable of reducing the disulfide bonds of oxidatively damaged proteins via their oxidoreductase activities. The free radical scavenging activity assay revealed the prominent hydroxyl and DPPH scavenging activities of rSsTXN-like 1 and rSsMtTXN-like in a dose-dependent manner. Transcriptional studies showed a broad distribution of SsTXN-like 1 and SsMtTXN-like transcripts in all the examined tissues. Significant (p < 0.05) up-regulations of both genes in immune-related tissues after LPS, poly I:C and Streptococcus iniae challenges reflect their critical role in redox homeostasis in black rockfish. Taken together, SsTXN-like 1 and SsMtTXN-like, as two active members of thioredoxin superfamily, have significant antioxidant properties to housekeep the redox potential during various stress conditions and innate immune response of Sebastes schlegelii.


Assuntos
Antioxidantes/metabolismo , Doenças dos Peixes/imunologia , Proteínas de Peixes/metabolismo , Sequestradores de Radicais Livres/metabolismo , Perciformes/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus iniae/imunologia , Tiorredoxinas/metabolismo , Animais , Evolução Biológica , Sequência Conservada/genética , Proteínas de Peixes/genética , Homeostase , Imunidade Inata , Oxirredução , Domínios Proteicos/genética , Isoformas de Proteínas/genética , Homologia Estrutural de Proteína , Tiorredoxinas/genética
16.
Fish Shellfish Immunol ; 56: 181-187, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27417231

RESUMO

The globular C1q (gC1q) domain containing proteins, commonly referred as C1q domain containing (C1qDC) proteins, are an essential family of proteins involved in various innate immune responses. In this study, three novel C1qDC proteins were identified from the disk abalone (Haliotis discus discus) transcriptome database and designated as AbC1qDC1, AbC1qDC2, and AbC1qDC3. The cDNA sequences of AbC1qDC1, AbC1qDC2, and AbC1qDC3 consisted of 807, 1305, and 660 bp open reading frames (ORFs) encoding 269, 435, and 220 amino acids (aa), respectively. Putative signal peptides and the N-terminal gC1q domain were identified in all three AbC1qDC proteins. An additional predicted motif region, known as the coiled coil region (CCR), was identified next to the signal sequence of AbC1qDC2. The genomic organization of the AbC1qDCs was determined using a bacterial artificial chromosome (BAC) library. It was found that the CDS of AbC1qDC1 was distributed among three exons, while the CDSs of AbC1qDC2 and AbC1qDC3 were distributed between two exons. Sequence analysis indicated that the AbC1qDC proteins shared <40% identity with other counterparts from different species. According to the neighbor-joining phylogenetic tree, the proteins were grouped within an invertebrate group with high evolutionary distances, which suggests that they are new members of the C1qDC family. Higher expression of AbC1qDC1 and AbC1qDC2 was detected in hepatopancreas, muscle, and mantle tissues compare to the other tissues analyzed, using reverse transcription, followed by quantitative real-time PCR (qPCR) using SYBR Green, whereas AbC1qDC3 was predominantly expressed in gill tissues, followed by muscles and the hepatopancreas. The temporal expression of AbC1qDC transcripts in gills after bacterial (Vibrio parahaemolyticus and Listeria monocytogenes) and lipopolysaccharide stimulation indicated that AbC1qDCs can be strongly induced by both Gram-negative and Gram-positive bacterial species with different response profiles. The results of this study suggest that AbC1qDCs are involved in immune responses against invading bacterial pathogens.


Assuntos
Complemento C1q/genética , Gastrópodes/genética , Regulação da Expressão Gênica , Imunidade Inata , Animais , Complemento C1q/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Gastrópodes/imunologia , Gastrópodes/metabolismo , Perfilação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Listeria monocytogenes/fisiologia , Análise de Sequência de DNA , Vibrio parahaemolyticus/fisiologia
17.
Biochem Biophys Res Commun ; 474(1): 43-50, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27086846

RESUMO

Calreticulin (CALR), a Ca(2+) binding chaperone of the endoplasmic reticulum (ER) and mainly involved in Ca(2+) storage and signaling. In this study, we report the molecular characterization and immune responses of CALR homolog from disk abalone (AbCALR). The full length AbCALR cDNA (1837 bp) had an ORF of 1224 bp. According to the multiple alignments analysis, N- and P-domains were highly conserved in all the selected members of CALRs. In contrast, the C-domain which terminated with the characteristic ER retrieval signal (HDEL) was relatively less conserved. The phylogenetic analysis showed that all the selected molluscan homologs clustered together. Genomic sequence of AbCALR revealed that cDNA sequence was dispersed into ten exons interconnected with nine introns. AbCALR mRNA expression shows the significant (P < 0.05) up-regulation of AbCALR transcripts in hemocytes upon bacterial (Listeria monocytogenes and Vibrio parahaemolyticus), viral (Viral haemorrhagic septicaemia virus; VHSV) and immune stimulants (LPS and poly I:C) challenges at middle and/or late phases. These results collectively implied that AbCALR is able to be stimulated by pathogenic signals and might play a potential role in host immunity.


Assuntos
Calreticulina/genética , Calreticulina/imunologia , Citocinas/imunologia , Imunidade Inata/imunologia , Moluscos/imunologia , Fatores de Transcrição/imunologia , Animais , Calreticulina/química
18.
Artigo em Inglês | MEDLINE | ID: mdl-26945103

RESUMO

Thioredoxin (TXN) superfamily proteins are identified by the presence of a thioredoxin active site with a conserved CXXC active motif. TXN members are involved in a wide range of biochemical and biological functions including redox regulation, refolding of disulfide containing proteins, and regulation of transcription factors. In the present study, a thioredoxin domain-containing protein 12 was identified and characterized from black rockfish, Sebastes schlegelii (RfTXNDC12). The full length of RfTXNDC12 consists of a 522-bp coding region encoding a 173-amino acid protein. It has a 29-amino acid signal peptide and a single TXN active site with a consensus atypical WCGAC active motif. Multiple sequence alignment revealed that the active site is conserved among vertebrates. RfTXNDC12 shares highest identity with its Epinephelus coioides homolog. Transcriptional analysis revealed its ubiquitous expression in a wide range of tissues with the highest expression in the ovary. Immune challenges conducted with Streptococcus iniae and poly I:C caused upregulation of RfTXNDC12 transcript levels in gills and peripheral blood cells (PBCs), while lipopolysaccharide injection caused downregulation of RfTXNDC12 in gills and upregulation in PBCs. Similar to TXN, RfTXNDC12 exhibited insulin disulfide reducing activity. Interestingly, the recombinant protein showed significant protection of LNCaP cells against apoptosis induced by H2O2-mediated oxidative stress in a concentration dependent manner. Collectively, the present data indicate that RfTXNDC12 is a TXN superfamily member, which could function as a potential antioxidant enzyme and be involved in a defense mechanism against immune challenges.


Assuntos
Antioxidantes/metabolismo , Apoptose , Proteínas de Peixes/metabolismo , Estresse Oxidativo , Perciformes/metabolismo , Tiorredoxinas/metabolismo , Sequência de Aminoácidos , Animais , Antioxidantes/química , Apoptose/efeitos dos fármacos , Sequência de Bases , Domínio Catalítico , Linhagem Celular Tumoral , Sequência Conservada , Dissulfetos/metabolismo , Relação Dose-Resposta a Droga , Proteínas de Peixes/química , Proteínas de Peixes/genética , Regulação Enzimológica da Expressão Gênica , Humanos , Peróxido de Hidrogênio/toxicidade , Insulina/metabolismo , Masculino , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Perciformes/genética , Perciformes/imunologia , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Conformação Proteica , Relação Estrutura-Atividade , Tiorredoxinas/química , Tiorredoxinas/genética , Fatores de Tempo , Transcrição Gênica
19.
J Microbiol Biotechnol ; 26(6): 1115-23, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26975773

RESUMO

ʟ-Asparaginase (E.C. 3.5.1.1) is an enzyme involved in asparagine hydrolysis and has the potential to effect leukemic cells and various other cancer cells. We identified the Lasparaginase gene (ʟ-ASPG86) in the genus Mesoflavibacter, which consists of a 1,035 bp open reading frame encoding 344 amino acids. Following phylogenetic analysis, the deduced amino acid sequence of ʟ-ASPG86 (ʟ-ASPG86) was grouped as a type I asparaginase with respective homologs in Escherichia coli and Yersinia pseudotuberculosis. The ʟ-ASPG86 gene was cloned into the pET-16b vector to express the respective protein in E. coli BL21 (DE3) cells. Recombinant ʟ-asparaginase (r-ʟ-ASPG86) showed optimum conditions at 37-40oC, pH 9. Moreover, r-ʟ-ASPG86 did not exhibit glutaminase activity. In the metal ions test, its enzymatic activity was highly improved upon addition of 5 mM manganese (3.97-fold) and magnesium (3.35-fold) compared with the untreated control. The specific activity of r-LASPG86 was 687.1 units/mg under optimum conditions (37°C, pH 9, and 5 mM MnSO4).


Assuntos
Asparaginase/genética , Asparaginase/metabolismo , Flavobacteriaceae/enzimologia , Água do Mar/microbiologia , Sequência de Aminoácidos , Antineoplásicos/isolamento & purificação , Asparaginase/química , Asparaginase/isolamento & purificação , Asparagina/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Glutaminase/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Magnésio/farmacologia , Manganês/farmacologia , Modelos Moleculares , Filogenia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Yersinia pseudotuberculosis/enzimologia , Yersinia pseudotuberculosis/genética
20.
Fish Shellfish Immunol ; 54: 11-21, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27026037

RESUMO

Thioredoxin domain-containing protein 12 (TXNDC12) is a small, disulfide-containing protein that belongs to the thioredoxin (TXN) superfamily. In the present study, we identified and characterized a TXNDC12-like gene, designated OfTXNDC12, from rock bream, Oplegnathus fasciatus. OfTXNDC12 consists of seven exons interrupted by six introns. Comparative genomic structural analysis revealed that the TXNDC12 of vertebrates is a structurally conserved gene. The coding sequence of OfTXNDC12 comprises 522 bp, which encodes 173 amino acid residues with the conserved thioredoxin active site motif, CGAC, and a probable C-terminal ER retrieval motif, GDEL. Transcriptional analysis of OfTXNDC12 showed the highest concentrations of the mRNA transcript in the liver, implying that it has a significant role in the liver under normal physiological conditions. In comparison, injection of lipopolysaccharide, Edwardsiella tarda, Streptococcus iniae, polyinosinic:polycytidylic acid (poly[I:C]) and rock bream iridovirus mostly triggered greater upregulation of OfTXNDC12 transcript levels in liver than in gill tissue, supporting its potential functional importance in the liver. Insulin disulfide reduction assay showed that the recombinant fusion protein (rOfTXNDC12) possesses significant thioredoxin activity. Treatment of LNCaP cells with the recombinant protein along with H2O2 revealed that rOfTXNDC12 increased the viability of cells and further supported its putative antioxidant capacity. Taken together, the results from our study suggest that OfTXNDC12 encodes for a potent antioxidant involved in redox regulation that shows significant responses to immune stimuli.


Assuntos
Proteínas de Peixes/genética , Regulação da Expressão Gênica/imunologia , Lipopolissacarídeos/farmacologia , Estresse Oxidativo/genética , Perciformes , Poli I-C/farmacologia , Tiorredoxinas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade Inata/genética , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência/veterinária , Tiorredoxinas/química , Tiorredoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...